
www.manaraa.com

EXTRACTING ICS MODELS FROM MALWARE VIA CONCOLIC ANALYSIS

A Thesis
Presented to

The Academic Faculty

By

Fabian Kilger

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Computer Science

Georgia Institute of Technology

August 2020

Copyright © Fabian Kilger 2020

www.manaraa.com

EXTRACTING ICS MODELS FROM MALWARE VIA CONCOLIC ANALYSIS

Approved by:

Prof. Brendan Saltaformaggio, Advisor
School of Electrical Engineering
Georgia Institute of Technology

Prof. Raheem Beyah
School of Mechanical Engineering
Georgia Institute of Technology

Prof. Paul Pearce
School of Computer Science
Georgia Institute of Technology

Date Approved: July 23, 2020

www.manaraa.com

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor Prof. Brendan Saltaformaggio

of the Cyber Forensics Innovation Laboratory at the Georgia Institute of Technology for his

support, enthusiasm and our insightful discussions. From the Technical University of Mu-

nich, I would like to thank my supervisor Prof. Claudia Eckert and advisor Fabian Franzen

for their support, encouragement and immensely helpful feedback. I am also particularly

thankful for my labmate Mingxuan Yao. No matter what problem I faced, he was always

there to discuss it and those discussions led to new unique ideas.

Next, I would like to thank Tohid Shekari and Qinchen Gu of the Communications As-

surance & Performance Group at the Georgia Institute of Technology led by Prof. Raheem

Beyah for providing me with test code for my evaluation.

I would also like to thank the international offices from both the Georgia Institute of

Technology and the Technical University of Munich for helping me in my remote studies

and making this research possible. Especially, my sincere thanks go to the coordinators of

my Double Degree Program: Dawn Rutherford from the Georgia Institute of Technology

and Prof. Michael Gerndt from the Technical University of Munich for their encourage-

ment, enthusiasm and advise.

Finally, I thank the Federation of German-American Clubs (VDAC) and the Fulbright

program for their scholarships that allowed me to study at the Georgia Institute of Technol-

ogy. The previous year has been a challenging but immensely enriching one. I was able to

meet a lot of awesome people and am thankful for every eye-opening experience I had.

iii

www.manaraa.com

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . vii

List of Figures . viii

Chapter 1: Introduction . 1

Chapter 2: Background . 4

2.1 Symbolic Execution . 4

2.1.1 Concolic Execution . 5

2.1.2 Search Strategies . 6

2.1.3 Triton Concolic Engine . 7

2.2 Dynamic Binary Instrumentation . 8

2.3 Python . 8

Chapter 3: Design . 11

3.1 Python transformation to C . 12

3.2 Choice of Tooling . 14

3.2.1 Choice of dynamic symbolic execution engine 14

3.2.2 Choice of static analysis framework 15

iv

www.manaraa.com

3.2.3 Choice of dynamic tracer . 16

3.3 Concolic execution . 16

3.3.1 Search strategy . 17

3.3.2 Branch prediction . 19

3.3.3 Snapshotting . 21

3.3.4 Other optimizations . 22

3.4 Output . 23

Chapter 4: Implementation . 24

4.1 Framework code structure . 24

4.2 Modifications to the Triton Dynamic Analysis Framework 25

4.2.1 Symbolic pointers . 25

4.2.2 Tracer modifications and porting 26

4.3 Python modeling . 28

4.3.1 Python’s object system . 28

4.3.2 Modeling . 30

Chapter 5: Evaluation . 32

5.1 Metrics . 32

5.2 Experiment Setup . 34

5.3 Functionality Test Programs . 34

5.4 ICS-related Samples . 38

5.4.1 Triton Malware . 38

5.4.2 PyModbus . 40

v

www.manaraa.com

5.4.3 Results . 40

5.5 Discussion . 43

Chapter 6: Limitations . 44

6.1 Symbolic dictionary lookups . 44

6.2 Python version . 44

6.3 Long values . 44

6.4 Floating point values . 45

6.5 Exec-Statements . 45

6.6 Operating system . 46

Chapter 7: Related Work . 47

7.1 Malware Analysis . 47

7.2 Concolic execution of Python . 47

Chapter 8: Conclusion . 49

References . 53

vi

www.manaraa.com

LIST OF TABLES

5.1 Analysis result of functional test programs 37

5.2 Analysis result of the Triton Malware and PyModbus 41

vii

www.manaraa.com

LIST OF FIGURES

3.1 Design of our framework . 11

3.2 Simplified transformed version produced by Nuitka (excluding exception
handling and reference counting) . 13

3.3 Example of Nuitka’s exception checking code 14

3.4 Extract of Triton-Malware dump function 19

3.5 Extract of Triton-Malware message parsing 20

4.1 Class diagram of Python’s object system 29

4.2 Flow of Python’s attribute lookup . 30

5.1 List of test-programs . 36

5.2 Components of the Triton Malware’s Python code 39

viii

www.manaraa.com

SUMMARY

While there has been significant progress in automated malware analysis, the focus of

prior work has been mostly on programs written in C/C++. Advanced malware such as

the Triton malware, however, also employ Python which imposes additional challenges to

the automated malware analysis. Motivated by this example, we design and implement a

concolic execution framework that is capable of extracting models of the targeted industrial

control systems (ICS) based on the Python malware’s communication with the system. Our

approach first transforms the Python malware to C and then utilizes a symbolic execution

engine to analyze the resulting C code. We prove the functionality of our framework on a

set of test programs and evaluate it on two ICS-related samples including the Triton mal-

ware. Finally, we discuss how the results of our analysis can be used to identify potentially

targeted ICS of a Python malware.

ix

www.manaraa.com

CHAPTER 1

INTRODUCTION

Attacks on Industrial Control Systems (ICS) are especially severe as they often target crit-

ical parts of infrastructure to either retrieve critical information or significantly harm a

specific organization and/or state. Recently, an ICS malware called Triton made the news

and was labeled ‘’the world’s most murderous malware‘’[1] after targeting a petrochemical

plant in Saudi Arabia. It received its label because it disables safety systems in industrial

control systems what then leads to catastrophic accidents. And, while it was first discovered

in 2017, there have been traces of it spreading further in the middle east[1]. To prevent such

further spread, one would first need to analyze the malware as to what systems are potential

targets.

However, analyzing which systems are potentially vulnerable and require additional

protection is a time-expensive manual task that needs to repeated several times: First, the

malware needs to be reverse-engineered to extract the targeted ICS communication proto-

col and used commands. Then, every ICS needs to be inspected on whether it supports

this protocol and the issued commands. Automating the process of extracting such infor-

mation from the malware will considerably ease the process of reverse-engineering and

considerably speeds up possible responses to new malware.

While previous work has extracted commands and helped reversing the protocol for

other domains of malware[2, 3] by leveraging the binary symbolic execution tool angr[4],

such tools would not be applicable to advanced malware such as Triton: It uses the Python

language which makes the analysis significantly more difficult. Specifically, the dynamic

features of interpreted languages such as Python generally limit the applicability of static

analysis. Additionaly, interpreted languages make heavy use of optimizations and data

structures that cannot be handled well by symbolic executors[5].

1

www.manaraa.com

Previous research on symbolic execution for Python[6, 5, 7] focuses on maximizing

code coverage and generating test-cases to detect bugs. However, for malware, one is gen-

erally interested in analyzing the behavior of the commonly taken paths inside the malware

ignoring rare edge-cases. Furthermore, these tools are limited in that they require modifi-

cations of the python source[5], cannot symbolically execute arbitrary types and features

of the language[6, 7], or cannot handle Python code which is either written or compiled

into C.

To protect against future ICS malware written in Python, we develop an analysis frame-

work that is able to efficiently run concolic execution for Python malware and extract infor-

mation that helps in classifying the targeted ICS software. For this, we extract control flow

information that enables us to target interesting locations in the malware (e.g. communi-

cations with the machines), develop a search strategy to efficiently reach points of interest,

and output symbolic models that represent the ICS communication protocols used by the

malware to communicate with the ICS. For this purpose, we first compile the Python Code

into C and, then, implement our approach using an open-source symbolic executor. Our

contribution can be summarized as follows:

• We propose a new method for concolic execution of Python by transforms it to C.

• We design and implement a concolic execution framework that is able to discover

common paths in python ICS malware and produce models of the ICS based on the

malware’s communication.

• We employ history-based branch prediction to efficiently and repeatedly pass valida-

tion functions in network protocols.

• We evaluate our approach on real malware (Triton) and an open-source python im-

plementation of the Modbus protocol used in ICS applications.

In the following, Chapter 2 will, first, discuss necessary background to understand this

work. Then, in Chapter 3, we explain the design of our framework; specifically, why and

2

www.manaraa.com

how we compiled Python to C code and integrated it into a concolic execution framework.

Next, Chapter 4 discusses implementation details such as the code structure, modifications

to used tools and details about our symbolic function models for Python. Following, we

evaluate our framework on a set of test and real-world ICS-related samples in Chapter 5.

We discuss limitations in Chapter 6, related work in Chapter 7 and conclude our work in

Chapter 8.

3

www.manaraa.com

CHAPTER 2

BACKGROUND

2.1 Symbolic Execution

After initially introduced in 1976 by James C. King[8], symbolic execution has seen a rise

in applications of program analysis such as automated vulnerability testing[9, 10, 11, 12]

where it has achieved high coverage and was able to discover many 0-day vulnerabilities.

Furthermore, it has also been applied to automatically generate exploits[13], reverse engi-

neering and reconstructing command and control servers[3].

The general idea in symbolic execution is that instead of letting the program run with

concrete values, the execution operates on symbolic expressions that may represent arbi-

trary (or constrained) values. For this, the program is initially supplied symbolic input

variables which will be operated on instead of concrete input. The program is then exe-

cuted as it would under normal execution. When a branching instruction is reached, the

execution splits into one path for each branch and the condition for the branch is added

to the path condition. A constraint satisfaction solver can then check whether the current

path is still feasible. This way, vulnerabilities can be found by formulating their conditions

into logical formulas and the behavior and semantics of a program path can be analyzed by

inspection of the path constraints and resulting symbolic formulas.

Common problems in symbolic execution are path explosion and expensive constraint

solving. Path explosion describes the phenomena where paths inside a program grow expo-

nentially. Specifically, each branch creates a new path and, as a consequence, when there is

a branching instruction inside a loop with n iterations, the loop itself already has 2n paths.

To fight against this problem, previous work has suggested the use of techniques such as

state merging[14], which will merge two similar paths by combining their expressions, and

4

www.manaraa.com

the use of more advanced search strategies such as ones trying to maximize coverage[9,

11]. Constraint solving, however, is expensive by its nature: It is an NP-complete problem

and the solution time can exponentially grow as the query size grows. To ease the strain

on the constraint solver, previous work has focused on two objectives: First, reduce the

size and cost of each query. For example, KLEE[9] uses constraint independence to reduce

the query only to formulas that have a dependence relation with the branch condition. The

second objective is to reduce the number of necessary queries. This has been achieved

by caching query results[9, 15], using concolic execution[9, 11, 12] and employing hybrid

approaches where fuzzing is combined with symbolic execution[10, 16].

Function modeling is a technique that can be used for two purposes. First, it is used to

introduce symbolic variables into the program (e.g. when a socket is read), and, second,

to optimize frequently used functions to mitigate the path explosion problem. The first

purpose is clear: Parts of the program that cannot be analyzed (for example when they are

external) need to be modeled for the symbolic execution to continue. The second purpose is

not as clear: Since library functions are frequently used, great efforts are taken to optimize

them for the concrete execution. This, however, can often hurt the performance of symbolic

execution. One such optimized function is the memcpy function: A naive implementation

would copy each byte by itself, but the optimized ones will copy several bytes with each

instruction and will branch depending on whether the number of bytes to be copied is still

greater than what the target processor can copy with any instruction. This significantly

speeds up the native execution of the function but it will also introduce multiple branches

leading to further path explosion.

2.1.1 Concolic Execution

Concolic execution[9, 11, 12] tries to improve symbolic execution further by reducing the

load on the constraint solver: Instead of symbolically executing the whole program, all val-

ues are traced concretely and symbolically. As a consequence, not every path condition of

5

www.manaraa.com

a branch needs to be sent to the constraint solver: The concrete values are already a proof

for the satisfiability of the branch taken by the concrete state. Furthermore, complex func-

tions and expressions can be concretized if solving them would no longer be feasible. For

example, cryptographically secure hash functions cannot be efficiently reversed and con-

cretizing them would allow us to continue to discover further branches whose conditions

do not depend on the hash function.

2.1.2 Search Strategies

For an efficient symbolic execution framework it is crucial to choose an appropriate search

strategy. As mentioned before, the number of paths generally explode and, therefore, not

every path can be explored. The search strategy will, as a consequence, decide which path

will be explored. In the following, we will describe common search strategies used in

symbolic execution.

Depth-First Search (DFS) is a traversal algorithm commonly used in graphs that first

tries to reach the deepest parts in the program and only backtracks when a path is fully

explored. As a consequence, the memory consumption scales linearly with the length of

the path and deeper parts are reached fast. However, DFS easily gets stuck in loops as it

will try to fully explore them first.

Breadth-First Search (BFS) is another traversal algorithm commonly used for graphs

and is the default search-strategy for angr[4]. It tries to reach out to all branches at the

same time. As a consequence, BFS generally does not reach too deeply into the program as

the number of paths are exploding. Furthermore, it will also lead to an exponential use of

memory as information about each active state needs to be maintained. Compared to DFS

however, it does not immediately get completely stuck in loops as it will simultaneously

explore paths in- and outside the loop.

Iterative-Deepening tries to combine the efficient memory consumption of DFS with

the broad coverage of BFS. Instead of continuing DFS until the path is fully explored, one

6

www.manaraa.com

sets a limit on the depth for each exploration and increments it after each iteration. This

way, only the number of states used for the current DFS need to be saved. While it may

seem that the execution is slower because states are explored multiple times, the asymptotic

runtime is the same as for DFS and BFS. For these reasons, it has been used in multiple

applications for program testing[17, 18].

Targeted or directed search[19]. This is a search strategy that tries to find a path reach-

ing a specific point in the program. It will use a distance metric to determine which path

reaches the program point in the shortest time. For this, it relies on static analysis infor-

mation to extract a control flow graph of the program. In this strategy, the choice of the

correct metric is essential as it has been shown that using the shortest path on the control

flow graph might fail crucially[19].

In the coverage guided search strategy, the goal is to maximize coverage of the program

and it has been proven to lead to high coverage inside a program[9]. Similar to the targeted

search, this strategy uses a metric to estimate the distance of one state to the nearest uncov-

ered program point. Therefore, this will also require the use of static analysis to retrieve a

control flow graph where the metric can then be computed on.

2.1.3 Triton Concolic Engine

Not to be confused with the malware Triton, Triton[12] is an open-source dynamic binary

analysis framework for the x86 and ARM architectures, consisting of a taint and concolic

execution engine. Compared to other concolic execution frameworks like KLEE[9] and

angr[4], its engine does not use an intermediate representation and operates directly on

the instructions themselves. Furthermore, Triton exposes python bindings while its core is

written in C++ for performance.

Additionally, compared to other concolic execution engines, Triton itself is very light-

weight: It does not contain any search strategies and, instead, it symbolically executes

instructions of one path that is given to it. Therefore, one will need to manage the symbolic

7

www.manaraa.com

states and implement a tracer which then will feed the instructions to the symbolic exe-

cution engine. Conveniently, one such tracer is shipped with Triton. It uses the dynamic

binary instrumentation (see Section 2.2) framework Intel Pin[20]. However, according to

their documentation, it only supports Linux versions with a kernel of version < 4.x.

As reflected by a capability benchmark[21], Triton currently has additional limitations

compared to other concolic execution engine frameworks: It cannot deal with symbolic

arrays and pointers[22], and, therefore, support for these would need to be manually added.

Furthermore, Triton does not provide any function modeling for the C library functions

and does not have any internal support for it. However, function modeling can still be

implemented by directly modifying the symbolic state.

2.2 Dynamic Binary Instrumentation

Dynamic Binary Instrumentation (DBI) is a popular method to dynamically add custom

made instrumentation to a binary. While for programs whose source code is available, com-

piler level instrumentation works very well, static instrumentation of closed-source binaries

is prone to crashing the program because data references are lost during the compilation

process and are not easily recoverable[20].

Dynamic instrumentation does not suffer from the same problem as it does not directly

modify the program and keeps all references in tact. For example, the DBI framework

Intel Pin[20] dynamically compiles instrumented code, saves it in code caches and, then,

executes the code cache. This way, the DBI framework makes sure that no value or address

reference is modified and hence avoids crashes.

2.3 Python

Python is a dynamically typed scripting language which has evolved over the years with

continuous updates. While there are multiple implementations of Python interpreters[23,

24, 25], in this work, we will focus on the most commonly used one, CPython[24]. In

8

www.manaraa.com

the following, we will shortly discuss the usage of dictionaries inside the Python language,

CPython’s internal optimizations and, lastly, the implementation of exceptions.

Dictionaries. The most discerning feature of Python is the very common use of the

dictionary (dict) type. It implements a typical key-value mapping. Programmers use them

frequently as they offer an easy way to store structured data whose elements are accessi-

ble by name. Additionally, the language itself uses dictionaries to store local and global

variables, attributes of objects, and members of classes and modules.

Dynamic name resolution. Python dynamically resolves each name (variables and

functions). As every function call is dynamic, statically reasoning about the call-graph and

global control flow graph of a Python program becomes increasingly difficult. While the

symbolic execution engine is running in a dynamic context, some components usually rely

on some form of static analysis. For example, the coverage-guided and targeted search

strategies rely on control-flow information to deduce the shortest path to a specific block.

Therefore, targeting strategies cannot be directly used.

Optimizations. To boost native performance, Python makes heavy use of optimiza-

tions. However, some of these optimizations hurt the performance of symbolic execution

engines. For example, Python uses fast paths, caching and interning. Interning makes

sure only one instance of a specific value exists in the program. Fast paths lead to more

branches inside a function and, therefore, increase path explosion. The logic for caching

and interning generally result in symbolic pointers, i.e. pointers whose value is a symbolic

expression, and therefore might point to multiple locations. These symbolic pointers are

either not supported (as with Triton) or are supported and tremendously slow down the

execution of a symbolic engine[26].

Exceptions. Python is a language with exception support and its standard library makes

use of it to communicate unforeseen events including syntax and name errors. In CPython,

exceptions are roughly implemented as follows: If an exception is raised, specific thread-

local variables will be set to point to the exception raised and the function raising the

9

www.manaraa.com

exception will return an error value. This type of implementation, where each function is

responsible for cleaning itself up on a raised exception, can be easily managed by common

search strategies since raised exceptions are reflected in the program’s control flow graph.

10

www.manaraa.com

CHAPTER 3

DESIGN

Tracer

Python
ICS Malware

Symbolic Execution
Engine

Modeled Environment
and Python Modeling

Search Strategy

Branch predictionCoverage

Static Analysis
Framework

Snapshots

Core-Logic

Compiled
Python

Executable
Transform to C

Control Flow Graph

Figure 3.1: Design of our framework

In Figure 3.1, we present an high-level overview of the design of our concolic execution

framework for Python. First, we will be transforming the Python malware into a C exe-

cutable and employ a tracing tool to direct the concrete execution of the malware and allow

snapshotting of the concrete states. At the center of our design is the core logic which re-

ceives a callback by the tracer for each instruction executed. It will forward the information

about the executed instructions to the symbolic execution engine and search strategy. The

symbolic execution engine will, in addition to symbolically executing instructions, check

whether a called function is part of the modeled environment. The modeled environment

represents all functions that are symbolically modeled as described in Section 2.1. If a

modeled function is encountered, the core logic will then communicate with the tracer to

synchronize the effects of the modeled function with the concrete environment. The search

11

www.manaraa.com

strategy will use the program’s control flow graph produced by the static analysis frame-

work, coverage information, and branch prediction to inform the core logic about which

branches need to be covered next.

In the following sections, we will first describe why and how we transform the Python

code to C. Then, we will explain our choice of tooling for the symbolic execution engine,

our tracer and our static analysis framework. Then, we will discuss the design of our

concolic execution including the search strategy and several optimizations. Lastly, we

present how we generate the output of our tool.

3.1 Python transformation to C

The first step in our design is to transform the Python code to C. We chose this because

building a symbolic execution engine directly for Python’s byte or source-code would incur

a high maintenance cost for each Python update. Additionally, malware could protect itself

from such an engine by transforming selected parts of the program into C code[27, 28].

Symbolically executing also generally fails to discover relevant paths of Python programs

as it lacks understanding of Python interpreters program counter. Therefore, we chose to

use an existing tool to transform C to Python and use an open-source symbolic execution

engine to analyze the transformed code. The Nuitka[28] project allows us to perform this

transformation.

Nuitka wraps each of Python’s operators into operator functions that are specialized

depending on the statically determined type. Wrapper for comparisons will either return a

boolean or a Python object. Operators will return the resulting object. For function calls,

the function’s name is first dynamically resolved to a function object and, then, the function

object is called with the help of a wrapper with the name CALL FUNCTION X where X is

a string representing the number of arguments.

12

www.manaraa.com

To show how the transformation from Python to C looks like, we depict an exam-

ple function in Figure ?? and the result of its transformation in Figure 3.2. Note that we

removed exception handling and reference counting for the sake of simplicity. The if con-

dition in the example program is transformed to a call to a RICH COMPARE wrapper in

line 6. Nuitka was able to infer that the type of the second argument is an int and chose the

corresponding specialization. The control flow of the python program is transformed into

multiple blocks that are jumped to with goto statements as the following if statement in

the C code shows. In line 17, the dynamic name resolution of Python is made explicit; the

name gcd is looked up in the module’s dictionary. Then, the modulo operation takes place

in line 18 and the recursive call happens in line 20. Note that for the modulo operation,

Nuitka did not perform any specialization since the types of the parameters are not known

statically.

1 PyObject* gcd(struct Nuitka FunctionObject const* self, PyObject **python pars) {

2 PyObject* retval;

3 PyObject* a = python pars[0];

4 PyObject* b = python pars[1];

5

6 nuitka bool cond eval = RICH COMPARE EQ NBOOL OBJECT INT(b, const int 0);

7 if(cond eval == NUITKA BOOL TRUE)

8 goto branch yes 1;

9 else

10 goto branch no 1;

11

12 branch yes 1:

13 retval = a;

14 goto return exit:

15

16 branch no 1:

17 PyObject* gcd fun = GET STRING DICT VALUE(moduledict main , const string plain gcd);

18 arg element 2 = BINARY OPERATION MOD OBJECT OBJECT OBJECT(a, b);

19 PyObject* call args[] = {a, arg element 2};

20 retval = CALL FUNCTION WITH ARGS2(gcd fun, call args)

21 goto return exit;

22 return exit:

23 return retval;

24 }

Figure 3.2: Simplified transformed version produced by Nuitka (excluding exception han-
dling and reference counting)

13

www.manaraa.com

In Figure 3.3, we show the exception handling code which is added after each operation.

After a wrapper function, Nuitka checks whether the returned value is NULL to indicate an

exception. If an exception was raised, Nuitka will fetch the exception information from

the thread-local storage (see Section 2.3) and set the exception lineno value to the

line where the exception occurred. Then, it will jump to the exception handling code that

checks whether an exception handler catches the thrown exception. If the exception is not

caught, it will propagate the exception further.

1 arg element 2 = BINARY OPERATION MOD OBJECT OBJECT OBJECT(a, b);

2

3 if(arg element 2 == NULL) {

4 FETCH ERROR OCCURRED(&exception type, &exception value, &exception tb);

5 exception lineno = 4;

6 type description 1 = ”oo”;

7 goto frame exception exit 1;

8 }

Figure 3.3: Example of Nuitka’s exception checking code

This type of exception handling will help us in designing our search strategy (Sec-

tion 3.3.1): Exception handling is directly embedded in the control flow and, therefore,

control flow graph based strategies are aware when exceptions are thrown and can use this

information to find more paths of the program.

3.2 Choice of Tooling

After having explained the first step of our design, we present what tools were chosen as

the building blocks of our design. In the following, we will explain the chosen symbolic

execution engine, the chosen dynamic tracer and, finally, the used static analysis frame-

work.

3.2.1 Choice of dynamic symbolic execution engine

As discussed in Section 2.1, there are multiple dynamic symbolic execution engines avail-

able for C programs. Note that because Nuitka compiles Python into C, we would also be

14

www.manaraa.com

able to use source-code level concolic execution engines like KLEE[9]. However, we argue

that to evade our analysis the malware author could either also use Nuitka to compile the

binary to assembly or obfuscate important parts into a Python module written in C.

Angr[4] is also a very powerful symbolic execution engine which could have been used

in our approach. However, it was shown shown that angr imposes a huge overhead in the

symbolic emulation[10]and specifically because we expect a lot of instructions to be purely

concrete, we feared this might become the bottleneck of our approach. Instead, we use the

more light-weight symbolic execution engine Triton[12] whose core is, contrary to angr,

written in C.

One downside of using Triton, however, is that it does currently not support floating

point operations while Python programs might freely use floating point data types. For ex-

ample, floating point data types are nearly always used in the context of sockets to specify

timeouts. Therefore, it is required for our analysis framework to handle floats in a reason-

able manner. To solve the problem of Triton’s lacking float support, we decided to always

concretize on any float related functions. While this might lead to under-approximation and

missed paths when analyzing floats, we will argue in Section 6.4 that this leads to no prac-

tical problem in our approach. Lastly, as previously mentioned, Triton does not implement

support for symbolic pointers and we had to implement this ourselves (see Section 4.2.1

for implementation details).

3.2.2 Choice of static analysis framework

We rely on static analysis information to implement the function modeling and search strat-

egy. Specifically, the static analysis framework will need to compute a control flow graph,

identify modeled functions and retrieve the location of function arguments. On top of that,

we will use the type information stored in the Python interpreter’s debug information to

compatibly access and modify Python-specific data structures.

As one of the biggest and most wide-spread frameworks, we decided to use IDA[29]

15

www.manaraa.com

as our main framework for static analysis. To integrate it into our framework, we created a

server inside an IDA headless session and implemented several commands that will export

IDA’s static analysis information. Since IDA itself generally only supports static analysis

of a single binary file, we implemented an additional PE-file loader script using LIEF[30]

so that we are able to retrieve static analysis results of the compiled binary, Python library

and dynamically loaded Python modules without having to start multiple IDA instances.

3.2.3 Choice of dynamic tracer

For our concolic execution, we require some component to concretely execute the program.

First, we considered to use IDA’s debugger interface together with WinDbg[31] because we

already employ IDA for static analysis. However, we observed that there is an extremely

huge overhead per instruction and found out that WinDbg’s and IDA’s performance do not

scale with bigger programs. Therefore, we switched to a more efficient way to trace the

program.

Considering that out-of-process tracing with debuggers like WinDbg[31] and GDB[32],

imposes a higher overhead because more context switches (between processes and kernel)

are required, we decided to use in-process tracers. This means that the tracer program

executes in the same process (and address space) as the analyzed program. Such tracers

can be implemented with the help of Dynamic Binary Instrumentation (DBI) frameworks,

which can dynamically analyze and alter the behavior of a program. We decided to use

Triton’s tracer that utilizes Intel Pin[20], port it to windows and implement the additional

functionality required by our framework (see Section 4.2.2 for the details of the tracer

modifications).

3.3 Concolic execution

After the transformation step and used tools were described, we now explain the inner

workings of our concolic execution engine. First, we will start by explaining the foundation

16

www.manaraa.com

of our search strategy and, then, explain how branch prediction can further improve this

strategy. This is followed up by an explanation of our snapshot mechanism that is used to

reset to a previously explored state. At the end of this section, we will then discuss further

optimizations that our concolic execution framework uses.

3.3.1 Search strategy

Search strategies are essential for successful symbolic execution since they determine,

which states/branches of a program will be explored. In Section 2.1.2, we discussed several

common search-strategies used for symbolic execution. However, the discussed strategies

are not optimal for our use-case: Our goal is not to explore all edge cases of a program and

achieve high coverage; instead, we try to find the path(s) through the program that are most

likely to occur in a real world scenario.

As a base, we use DFS since our goal is to find a path that finds the usual exit of the

program. To not get stuck at loops or wrong branches, we detect loops and compute basic

blocks from which we can no longer reach any point of interest so that we can avoid them.

Generally, points of interest would be functions that might be part of a communication

with the ICS device such as receiving and sending messages. However, as discussed in

Section 2.3, there is no sound static way to compute any function transitions and hence

we cannot easily compute whether we can reach a Python function from another. Instead,

we will try to dynamically discover the function transitions of the Python program and

compute reachability based on the dynamically detected transitions. Therefore, the points

of interest are Python function calls that have not been covered yet.

The search logic can then be summarized as follows: First, we compute the control flow

graph of the program and find all blocks that can reach any uncovered Python call in the

program. If we reach a block that can no longer reach these points of interest, we will apply

DFS to revert to the first block that can reach an uncovered Python call and solve for the

correct successor. Then, whenever we reach an uncovered Python call, we will recompute

17

www.manaraa.com

the reachable Python calls for each block.

By avoiding blocks that cannot reach any point of interest, we can significantly improve

the performance of the DFS. However, we still encounter problems inside loops: First, in

any loop, any block that is reachable from inside the loop can also be reached from every

point inside the loop. Therefore, the search strategy cannot lead the execution to our points

of interest. To mitigate this problem, we dynamically try to detect loops and will not use

the back-edge for our reachability analysis.

The second problem that can occur inside loops is a symbolized branching condition:

Because in each iteration the symbolized branching condition will split the execution in

two, the total number of paths in such a loop would be equal to 2n where n is the number

of iterations. Since our base DFS strategy would try to fully explore all paths inside the

loop, we would get stuck here.

An example of one such loop is depicted in Figure 3.4. There, we show the function

dump which prints a hexdump of a sequence of bytes. This function is called by the Triton

malware whenever an invalid response from the ICS is received - probably to help the

authors with debugging. In line 19, there is a symbolized branch condition that is inside a

loop. The condition checks whether a specific character is printable and will replace it with

a dot in case it is non-printable. While this is a loop that is not interesting for our analysis

in any way, it causes the DFS approach to fail and, therefore, we need to add something to

our strategy so that we can prevent this case.

18

www.manaraa.com

1 def dump(data, text=None):
2 if isinstance(text, basestring):
3 if len(text) > 0:
4 print text
5 if not isinstance(data, basestring):
6 print ’BAD DATA’
7 return
8 for i in xrange(0, len(data) / 16 + 1):
9 seq = data[i * 16:min(i * 16 + 16, len(data))]

10 hexes = (’ ’).join((a.encode(’hex’).upper() for a in seq))
11 sys.stdout.write(hexes)
12 for i in xrange(0, 16 − len(seq)):
13 sys.stdout.write(’ ’)
14
15 sys.stdout.write(’ ’)
16 for i in xrange(0, len(seq)):
17 c = seq[i]
18 sr = ’’
19 if ord(c) < 32 or ord(c) >= 128:
20 c = ’.’
21 sys.stdout.write(c)
22
23 sys.stdout.write(’\n’)
24
25 sys.stdout.write(’\n’)

Figure 3.4: Extract of Triton-Malware dump function

As a solution, we track which basic blocks we already covered and, instead of exploring

the deepest of all branch, we will first explore the deepest of all branches that directly lead

to an uncovered block. That way, after solving the condition in line 19 once, we will revert

further and first explore other paths.

3.3.2 Branch prediction

When we ran our initial tests using our search-strategy, we encountered a path-explosion

problem that could not be solved using the previously mentioned coverage-based approach.

Specifically, network-protocol implementations often utilize a parsing routine that checks

whether the header contains valid information. Since this validation function will already

be explored and fully covered after the first time, the coverage-based approach does not

19

www.manaraa.com

know to prioritize the exploration of the validation function over the exploration of an

path-exploding loop like in the previously mentioned dump function.

To explain in more detail as to how this can fail, let us take a look at the specific case

inside the Triton malware. An extract of one such validation function used by the Triton

malware is depicted in Figure 3.5. This function will process received UDP data (from

udp result) in 3 steps. First, in line 8, the length of the packet is checked to be at least

the minimum size of 6. Afterwards in lines 12 to 14, the first header field is checked, which

apparently denotes the length of the packet. In the last step, in lines 18 to 20, the saved

crc16 checksum at the end of the message is checked to match the computed one.

1 def tcm result(self):
2 if self. tcm result != None:
3 return self. tcm result
4 self. perror = −1
5 data received = self.udp result()
6 while True:
7 self. tcm result = (0, None)
8 if data received == None or len(data received) < 6:
9 print ’bad tcm size’

10 self. perror = 10
11 break
12 type, size = struct.unpack(’<HH’, data received[0:4])
13 packet = data received[4:−2]
14 if len(packet) != size:
15 print ’bad tcm size’
16 self. perror = 10
17 break
18 checksum = struct.unpack(’<H’, data received[−2:])[0]
19 test cksum = crc.crc16(data received[:−2])
20 if checksum != test cksum:
21 print ’bad tcm crc’
22 self. perror = 11
23 break
24 self. perror = 0
25 self. tcm result = (type, packet)
26 break
27
28 return self. tcm result

Figure 3.5: Extract of Triton-Malware message parsing

20

www.manaraa.com

When we now enter this validation function a second time, we will first fail at the

condition in line 12, because the received data is unconstrained and very likely does not

match the size. Then, following our current strategy, we will continue to execute until we

can no longer reach any point of interest. This means that, eventually, we will also again

reach the loop inside dump. This time however, because we already covered every path in

the validation function, the coverage metric cannot prevent the search-strategy to get stuck

in exploring the dump function.

To solve this problem and to improve our search strategy on such validation functions,

we used a construct commonly built into our processors: Dynamic Branch Prediction[33].

Specifically, we will try to predict which successor of a branch will lead us to better results

based on the previous exploration of that branch. Applied to validation functions, this

means that when we successfully found the correct path through this function we want

to remember this path and follow it in the second exploration as well. To achieve this,

we remember, for each branch, the previously explored successor and follow that same

successor the next time as well.

3.3.3 Snapshotting

Whenever we want explore a new branch in our search strategy, we will need to reset the

program to a previous point of time. Remembering this previous state of the program is

what we refer to as snapshot. There are multiple ways to achieve this: First, one could

restart the program and stop at the desired point. Second, it is possible to trace all modifi-

cations and then revert them to the desired point. Lastly, one could also save all the whole

memory space and reset it to that point. The second option is generally the best option as

it requires the least amount of memory and doesn’t incur any overhead of restarting the

program. Therefore, we chose use this option to snapshot our concrete state. However, for

the symbolic execution engine Triton, we did not find an efficient way to record and revert

changes in the symbolic expressions and, therefore, always replay the symbolic execution

21

www.manaraa.com

to the point of interest. While this certainly is not optimal for the performance, this has not

shown to be a performance bottleneck yet.

3.3.4 Other optimizations

We also employ several optimizations introduced in previous work. Specifically, we try to

reduce the overhead of symbolic emulation and dynamic binary instrumentation by only

selectively enabling them. In the following, we will explain the techniques that achieve

this.

When we use selective symbolic execution[11] and disable symbolic emulation for cer-

tain functions, it is important to correctly synchronize the symbolic state so that the con-

crete state still represents an instance of the symbolic one. Unlike previous work[11], we

do not automatically convert concrete return values to symbolic ones because we noticed

a huge performance overhead when we did. Specifically, more symbolic values will in-

crease the number of symbolized branch conditions. As a consequence, we can observe

a significant and exponential slowdown as exponentially many more paths exist that the

search strategy will try to explore. Furthermore, the additional feasible paths are often rare

edge-cases such as being out-of-memory or operating system failures. Therefore, they also

do not serve the goal of our search strategy.

Instead of symbolizing return values, we carefully selected functions that in practice

do not need to be symbolically executed. Such functions are, for example, the import

of additional modules, the initialization of a module and the dynamic name resolution of

object members. By default, we will also concretely execute any library functions that we

do not whitelist. For library functions with relevant symbolic effects, we manually specify

how the symbolic information is propagated by the function and use it to synchronize the

symbolic state afterwards. One such example would be Python’s internal conversion from

a long to a Python int object which is implemented by the function PyInt FromLong.

This function uses its own routines to allocate space for a new Python int object and, then,

22

www.manaraa.com

copies the C long into the object’s memory. In case the parameter was symbolized, we will

have to copy the symbolic expressions saved in the parameter to the new object’s memory.

However, we would not need to symbolically execute the allocator.

To reduce the overhead of the dynamic binary instrumentation, we employ selective

tracing. There, we disable the instrumentation for functions where we can foresee that

its execution will not affect any symbolic state. Afterwards, the symbolic state is lazily

synchronized with the concrete state. Lazy in this context means that we only synchronize

the changes when the symbolic state is actually using any of the changed concrete state.

One such example where this can be used is to significantly improve the performance is the

lookup of attributes in a Python object whose attribute names are purely concrete.

3.4 Output

After successfully exploring the target Python malware, we will output unique sequences

of a interesting system functions that our framework was able to discover. Those sequences

are accompanied by the generated path constraint which represents a model for the behavior

the malware expects from the ICS. Additionally, for each message the malware sends to the

ICS, we output symbolic expressions which describe those sent messages.

The set of interesting system functions can be flexibly changed to include more func-

tions if a more fine-grained analysis would be required. By default, we record the access

of files, sent network messages, and every function that introduces input to the program as,

for example, the socket receive function does.

23

www.manaraa.com

CHAPTER 4

IMPLEMENTATION

After having explained our design choices, this chapter will discuss some notable imple-

mentation details of our framework. Specifically, we explain the module structure of our

framework, modifications made to the Triton dynamic analysis framework’s tracer and,

finally, details about the modeling of Python functions.

4.1 Framework code structure

The following section describes the components of our framework and how they interact

with each other. The symbolic execution component is responsible for interfacing with

Triton. This component synchronizes the symbolic state with the concrete state including

changes after pure concrete execution (see Section 3.3.4). For this, it hooks the memory

accesses via Triton’s API and checks whether there was an untracked change in the concrete

execution or whether it is the first access of this address. Furthermore, it exposes an API to

reset the symbolic state as well as to solve branch conditions.

We also constructed an abstraction layer for the tracer and implemented our logic on top

of that. This abstraction layer would allow us to easily exchange the tracer for a different

one without having to modify any other logic in our code. An implementation of this

abstract interface would need to incorporate functions common for a debugger, including

setting/getting memory and register contents, querying the currently loaded modules and

hooking the beginning of an instruction.

The Trace component stores a list of executed instructions and the symbolized branches

encountered. The implementation of the search strategy (excluding the static analysis) and

snapshotting are realized inside this component as well. Furthermore, it generates back-

slices and detects loops in the program base on the recorded trace.

24

www.manaraa.com

The Modeling component exposes an API to hook into function calls and potentially

return a modeled function. This hook allows us to add multiple different kinds of modeled

functions such as dynamic models (see Section 4.3.2), manually coded models and models

generated from a database. Then, the ModeledFunction class of this component exposes

API’s to comfortably interact with the concrete and symbolic state, def-use information

for back-slices, and function arguments. Furthermore, it is responsible for generating the

output of the framework (see Section 3.4).

The static analysis component is split in two parts. One part resides inside the IDA[29]

framework, responsible for the extraction and sending of static information. The other

part, residing in the tracer, manages the data and employs caching to reduce the number

of queries to IDA. Furthermore, it stores the control flow graph and uses it to compute the

path to the possible targets in our search strategy.

The Python modeling component (described in more detail in Section 4.3) consists of a

wrapper module that exposes user-friendly API’s to the Python object structures so that they

can be used as if they would be normal Python objects. For this, it utilizes the extracted

type information from the static analysis module. Finally, the component encompasses

several modeled Python functions including sockets, files, and the dict type.

4.2 Modifications to the Triton Dynamic Analysis Framework

4.2.1 Symbolic pointers

As discussed in Section 2.1.3, the Triton dynamic analysis framework currently does not

handle symbolized pointers and always concretizes them. However, as discussed in Sec-

tion 2.3, optimizations inside Python result in symbolic pointers. Specifically, small int

values and strings of length 1 are optimized so that there exists only one copy of them at

all times. As a consequence, the pointer for an int object will be symbolized and when the

program tries to access the stored integer value and compare it with another, we will run

into a symbolic memory access.

25

www.manaraa.com

To work with Triton’s missing support of symbolic pointers, we manually implemented

logic to deal with symbolic memory access. First, we added a callback to the Triton frame-

work for symbolic memory accesses. Then, we used this callback to implement the logic in

the codebase of our framework. For symbolic accesses, we create a chain of ITE (if-then-

else) expressions where we match each possible address the pointer can point to with the

value stored at that location. However, for this to work, we need to reliably compute which

values a pointer can point to. To achieve this, we first try to extract the used base address

of the memory access from the symbolic expression and then use IDA’s analysis (and the

symbols in the executable file) to guess the start and end of the accessed array. This way,

we can compute all possibly accessed elements and build our ITE-chain. However, if the

extraction of the base address or the guessing of the array bounds fails, we concretize the

symbolic memory access instead.

4.2.2 Tracer modifications and porting

To implement features such as selective symbolic execution and selective tracing(see Sec-

tion 3.3.4), and to port the tracer to Windows, we had to perform some modifications to

Triton. First, we had to make the tracer compile on Windows. Doing so, we discovered

that Intel Pin and Python have conflicting type declarations on Windows. To fix those, we

had to put all Python include statements inside a separate namespace and be careful to in-

clude all standard library files included by Python outside of Python’s namespace because

otherwise they would not be accessible outside from the global namespace.

Next, we encountered library dependency errors because Intel Pin removes the system

library search path and only allows to link against the kernel32.dll and ntdll.dll

dynamic libraries. However, Python and its modules are linking against several other sys-

tem libraries. To solve this problem, instead of implicitly linking against the system li-

braries, we wrote wrappers around the library functions and explicitly linked against them.

This means, that instead of instructing the linker to link against the system libraries, we

26

www.manaraa.com

loaded the system libraries via the LoadLibrary call and used GetProcAddress to

find the addresses of the required system calls.

After solving library dependency errors, we encountered several crashes in the initial-

ization routines before the main function was called. To solve this, we first statically

linked Python as per the recommendations of the Intel Pin user guide[34]. This allowed us

to use Pin and Python together on Windows. Afterwards, we still faced problems running

the tracer. We tracked the problem down to the Z3 library: Pin does not support throwing

exceptions and Z3 heavily uses exceptions. However, we currently cannot explain why the

Z3 library did not cause problems on the Linux version of the Triton tracer as well. To

solve this incompatibility, we create another process for Z3 and send our requests to it via

the Windows socket API.

Furthermore, to add our optimizations (Section 3.3.4) to the tracer, we had to add

Python callbacks to stop and restart the analysis routines. Before, it was only possible

to statically select a range of instructions that would be symbolically executed by the Tri-

ton framework. For this change, we had to significantly restructure the way Triton allocates

memory for instructions, and how it handles conditional instrumentation. After the change,

memory for the analysis of an instruction analysis will only occur when it instruction is

first symbolically executed. Additionally, we followed Intel Pin’s recommendations to in-

line the routines that conditionally enable and disable the instrumentation for symbolic

execution.

Finally, our approach requires the Appcall feature that is present in common debug-

gers and Intel Pin. Appcall allows the analysis routines to call functions of the ana-

lyzed program. This is used in the realization of our Python modeling, e.g. to allo-

cate additional Python objects. To use Intel Pin’s Appcall feature inside our Python code

base, we built a wrapper around Intel Pin’s PIN CallApplicationFunction func-

tion. Since C/C++ does not allow to compatibly pass an array of arguments to a varargs

function, we did not implement the wrapper in C. Instead, we modeled the used enums

27

www.manaraa.com

and structs for Intel Pin’s Appcall in Python and used the ctypes module to call the

program’s function. Furthermore, Pin is written in C++ and, therefore, the symbol for

PIN CallApplicationFunction is mangled in a platform-dependent way. To ac-

cess the function with ctypes in a platform-independent way, we stored the function

pointer in a global variable and exported the variable using the extern C directive.

4.3 Python modeling

As discussed in Section 4.1, the Python modeling component is split into two parts: One

that is made of several wrappers to expose a comfortable API and one that implements

the modeled functions and operators. In the following, we will first explain the internals

and structure of Python’s object system. Then, using this, we will explain internals of our

modeling.

4.3.1 Python’s object system

In Figure 4.1, we depict a class diagram of the core types related to the object system.

Each value in Python is a PyObject that stores a PyTypeObject to denote its type.

Note that even types are objects themselves and the type of the base PyTypeObject is

itself. Types store several functions for arithmetic operations, allocation logic, and attribute

lookup as well as a list of defined attributes (tp members) and methods (tp methods).

The tp dictoffset describes the offset of the ob dict pointer from its object and

defines whether an object contains this pointer in the first place.

28

www.manaraa.com

Figure 4.1: Class diagram of Python’s object system

The frequent use of dictionary objects (dict/PyDictObject) is, as mentioned in Sec-

tion 2.3, one of the core features of the Python language and is also very frequently used

for Python’s internal bookkeeping. Specifically, on top of a dictionary to store the object’s

attributes, each type also contains a dict (tp dict) that stores its class attributes and de-

scriptors. Descriptors describe how an attribute of an object can be modified and retrieved.

Internally, they are used by calling its type’s tp descrget and tp descrset func-

tions. Descriptors are added to the type’s directory for each attribute that is declared with

Python’s slot features. Using slots, the programmer is able to reduce the memory consump-

tion of objects by telling the interpreter to allocate storage for the attribute directly adjacent

to the PyObject’s memory. In this case, descriptors store the offset of the attribute to the

beginning of the object.

The access of an attribute can then be summarized as depicted in Figure 4.2. If there

exists a dictionary in one of the base type’s dictionaries, Python will use it to access the

attribute. In the other case, Python will check whether the object contains a dictionary and

will use that for the attribute access.

29

www.manaraa.com

Figure 4.2: Flow of Python’s attribute lookup

4.3.2 Modeling

We built our wrappers for Python types similar to Python’s internal structure. First, we wrap

the PyObject itself and implement all generic functions on it. Then, for each wrapped

type, we inherit from this class and add routines to extract the type’s information from

memory. To detect the type of a dynamic Python Object, we extract the type address and

look up the symbol corresponding to that address. Using this, we can directly map from

the name to the corresponding wrapper.

For the modeling and selective symbolic execution (see Section 3.3.4) of attribute

lookups, we will first check whether the looked up attribute is accessed with a descrip-

tor or through the object’s dictionary. In case a descriptor is used whose behavior we do

not know (e.g. user-defined ones), we do not perform any modeling or selective symbolic

execution and, instead, symbolically execute the interpreter itself. In every other case, it

is safe to disable symbolic execution and just observe the object that was returned by the

attribute lookup.

30

www.manaraa.com

Similarly, the modeling of Python’s operators requires dynamic inspection as well:

Python is a dynamically typed language, which means the types are not known statically.

If we then would like to model an operator function such as

BINARY OPERATION MOD OBJECT OBJECT OBJECT (as previously seen in Figure 3.2),

we need to be able to model all possible types. If we would try to build an symbolic ex-

pression that supports all types, it would have to include cases and logic for every possible

type. As a consequence, the symbolic expression grows very large and will slow down the

constraint solving. Instead, we dynamically decide how we model the function based on

the types of the passed objects. In case we do not have a model for the specific types, we

fall back to concolic execution of the operator function itself. Additionally, since symbol-

ized types are never returned by any of our modeled functions, we can always accurately

determine the type of the arguments.

31

www.manaraa.com

CHAPTER 5

EVALUATION

After describing the technical details of our approach, this chapter focuses on the evalu-

ation of our framework. We will describe the metrics and experiment setup used in our

evaluation, then perform experiments on a variety of programs. Specifically, we will first

run experiments on a selected number of programs that showcase the correct functioning

of our framework. Then, we will evaluate on the Triton malware and one other real world

ICS-related sample. Lastly, we will discuss the results of our approach.

5.1 Metrics

Lines of Code (LOC) is the number of lines inside all Python files used by Nuitka, exclud-

ing the Python’s standard library modules. For this purpose, we use the cloc[35] utility to

count the lines of code. With the help of this tool, we exclude whitespaces and comments

and only count actual lines of code

Executable size is the file size of the executable generated by Nuitka. Nuitka compiles

the Python code into C and then uses the compiler (on Windows: MSVC) to build an

executable. In this process, it generates and adds a lot of glue code, which will be added to

the executable. This generally bloats the binary to a huge size and, therefore, together with

the LOC, gives some insight on the efficiency of the transformation from Python to C.

Analysis time is the amount of time passed for the analysis to finish. It is calculated by

taking the difference of the time when the analysis was started and when the analysis has

finished. To retrieve the time, we use Python’s time.time() function. The unit of time

is minutes.

Reached Python calls is the number of dynamically resolved calls in the binary that

we were able to reach. Note, that we exclude dynamically resolved calls inside Python’s

32

www.manaraa.com

standard modules such as the socket module.

Total Python calls is the total number of dynamically resolved calls that were com-

piled into the binary with Nuitka. We exclude calls inside Python’s standard modules (e.g.

socket) module.

#Call-Chains is the number of call-chains that we were able to retrieve. A Call-Chain

is a sequence of interesting calls as defined in Section 3.4.

Depth Call-Chain records the minimum/average/maximum depth of all retrieved unique

call-chains.

Constraint queries is the number of all constraint queries to the constraint solver. We

increment our counter each time we query the symbolic execution engine.

Constraint time is the number of time spent solving constraints. This is computed by

recording the start and end times of a query to the constraint solver and then taking the

difference of those. We will then add up the time of all queries and report it. The unit of

time is minutes.

Number of solvable symbolized branches (NoSSB) is the number of branch instruc-

tions whose condition was dependent on a symbolic input variable and where both branches

were deemed solvable by the constraint solver.

Number of branches reverted (NoBR) is the number of instructions with symbolic

branch conditions that were reverted during the execution. Reverted in this context means

that the taken branch was not leading to a path to one of the targets and, therefore, we

reverted back to that branch instruction to solve for a different successor.

Branches predicted records the total number of branches that were taken because of

our branch prediction strategy.

Branches falsely predicted records the number of times the branch prediction was

wrong and needed to be updated. Note that a branch can be counted in Branches falsely

predicted without being counted in Branches predicted. Specifically, when no other uncov-

ered Python call reachable is reachable from the predicted branch and it was therefore not

33

www.manaraa.com

symbolically explored.

Instructions executed records the total number of instructions that we concolically

executed. This does not include instructions that were executed with selective tracing or

selective symbolic execution (refer to Section 3.3.4).

Block Coverage is the percentage of covered basic blocks to all basic blocks in com-

piled functions. Note, that since Nuitka adds blocks to check and deal with exceptions after

every Python instruction, we can expect lower coverage as would be usually reported for

test generating concolic execution frameworks. Furthermore, in libraries there might be

more functionality implemented than one can trigger with input.

5.2 Experiment Setup

All tests were run on a Intel Core i7-7700 CPU with 8 cores, 3.5 GHz per core, 14 GB of

memory and running a 64-Bit Windows 7. For the functioning of the symbolic analysis,

we have to choose the maximum size for received network messages. We chose to use

100 bytes as the maximum size so that one message can contain the full header and also

additional data. For the program arguments, we allowed up to 5 program arguments with a

maximum length of 16 bytes.

5.3 Functionality Test Programs

We first evaluated the functionality of our concolic execution engine and Python modeling

with a manually crafted test set. For this, we first have to define which functionality we

want to check. On top of testing the basic symbolic execution, we test features of the

Python language that we explicitly modeled as well as parts of the Python language that

we deemed possibly challenging for symbolic execution engines. Specifically, we test the

following features of Python programs: First, we make sure that a single path execution can

finish without problems. Second, we test whether the symbolic input (program arguments,

socket input) is properly used and conditions can be solved. Third, we check that no loss

34

www.manaraa.com

of symbolic information occurs when storing variables in a dictionary such as in a class.

Fourth, we test that our function models properly work as intended.

In Figure 5.1, we depict the list of our test programs. In Figure 5.1a, we test scenar-

ios related to the program arguments. We check whether we can correctly solve for the

length of the arguments and cases related to IndexError exceptions when accessing the

arguments. Furthermore, it tests the format function and string concatenation in Python.

Next, in Figure 5.1d we test whether we lose any symbolic information when storing vari-

ables inside a class (internally a dict). Then, Figure 5.1b tests whether the modeled hex

encoding function is working as intended. Following, Figure 5.1e checks whether the ex-

ecution of a single path containing float operations is working. Finally, Figure 5.1c tests

the socket operations and Figure 5.1f checks whether symbolic checksum expressions over

input strings can be built with our modeled operators and, then solved.

35

www.manaraa.com

1 import sys
2
3 def dummy():
4 return 1
5
6 if len(sys.argv) <= 1:
7 print("Hello world!")
8 dummy()
9 else:

10 try:
11 print("Argument 2: {}"
12 .format(sys.argv[2]))
13 dummy()
14 except IndexError:
15 print("IndexError")
16 dummy()
17
18 if sys.argv[1] == "haxor":
19 print("W3lc0m3 fr13nd, format: {}!"
20 .format(sys.argv[1]))
21 print("W3lc0m3 fr13nd, addition: "
22 + sys.argv[1] + "!")
23 dummy()
24 else:
25 if len(sys.argv) == 2:
26 print("Wow, hello! len(argv): {}!"
27 .format(len(sys.argv)))
28 dummy()
29 else:
30 print("Hello {}! len(argv): {}!"
31 .format(sys.argv[1], len(sys.argv)))
32 dummy()

(a) Argv-Test

1 import sys
2
3
4 def dummy():
5 return 1
6
7 msg = sys.argv[1]
8
9 if msg.encode(’hex’) == "7365637265746b6579":

10 sys.stdout.write("Success!\n")
11 dummy()
12 else:
13 sys.stdout.write("Try again!\n")
14 dummy()

(b) Encoding test

1 import sys
2 import socket
3
4 DEFAULT PORT = 31337
5
6 def dummy():
7 return 4 + 5
8
9 def run(port):

10 sock = socket.socket(socket.AF INET,
11 socket.SOCK STREAM)
12 server address = (’localhost’, port)
13 sock.bind(server address)
14 sock.listen(1)
15 print("Setting up connection on port: " + str(port))
16 print("Waiting for connection")
17 connection, client address = sock.accept()
18 connection.settimeout(20)
19 print("Connection from " + str(client address))
20 try:
21 data = connection.recv(4096)
22 if data == "1337h4x0r":
23 print(data)
24 sock.connect((data, 1337))
25 dummy()
26
27 sys.stdout.write(data)
28 connection.sendall(data)
29 connection.send(data)
30 except socket.timeout:
31 print("Timeout received")
32 dummy()
33 connection.close()
34
35 def do stuff():
36 if len(sys.argv) > 1:
37 port = int(sys.argv[1])
38 run(port)
39 else:
40 port = DEFAULT PORT
41 dummy()
42
43 do stuff()

(c) Socket Test

1 import sys
2
3 class Test(object):
4 def init (self, val):
5 self.val = val
6 self.str = ""
7
8 def dummy():
9 return 1

10
11
12 t = Test(3)
13
14 msg = sys.argv[1]
15
16 t.val = int(msg)
17
18 if t.val == 3:
19 sys.stdout.write("Success!\n")
20 dummy()
21 else:
22 sys.stdout.write("Try again!\n")
23 dummy()
24
25 msg = sys.argv[0]
26
27 t.str = msg
28
29 if t.str == ’d’:
30 sys.stdout.write("Success string!\n")
31 dummy()
32 else:
33 sys.stdout.write("Try again string!\n")
34 dummy()
35
36
37 t.stri = sys.argv[2][3]
38
39 if t.stri == ’g’:
40 sys.stdout.write("Success string subscript!\n")
41 dummy()
42 else:
43 sys.stdout.write("Try again string subscript!\n")
44 dummy()

(d) Class Test

1
2 f = 3.5
3 f = f / 2.0
4 f = 1 / f
5 f = f / 3
6
7 f = int(f) / 1.
8 f = int(f) * f
9 f = int(f) + 2.5

10 f = −2.5 + int(f)
11 f = long(f) − 2.5
12
13 print "Success: {}".format(f)

(e) Float Test

1
2 import socket
3
4 result = 2139
5
6 def dummy():
7 return 4+5
8
9 s = socket.socket()

10
11 recv = s.recv(100)
12
13 i = 0
14 r = 1
15 for c in recv:
16 r += ord(c)
17
18 if r == result:
19 dummy()
20 print("Correct")
21 dummy()
22 dummy()
23 else:
24 dummy()
25 print("Wrong")
26 dummy()

(f) Operator test

Figure 5.1: List of test-programs

36

www.manaraa.com

Table 5.1: Analysis result of functional test programs

Metric Argv Encoding Socket Class Float Operator

LOC 29 10 37 31 10 19

Executable Size 632KB 630KB 763KB 635KB 629KB 756KB

Total Python Calls 10 5 16 14 1 6

Analysis time 1.38 1.32 1.70 1.49 1.16 1.69

Instructions executed 2522 1170 13726 3829 1674 23052

Block coverage 46.69% 45.78% 34.79% 41.55% 45.26% 48.74%

Reached Python Calls 10 5 16 14 1 6

Constraint time 0.05 0.02 0.04 0.08 0.00 0.03

Constraint queries 37 7 59 30 0 4

NoSSB 4 2 3 6 0 1

NoBr 4 2 3 4 0 1

Branches predicted 0 0 0 0 0 0

Branches falsely predicted 1 0 0 0 0 0

Results. We depict the gathered metrics in Table 5.1. We exclude metrics related to

call-chains as they hold no purpose in the context of functional tests. First, note that our

framework was able to correctly analyze all test programs and discover all paths. This can

be seen when comparing the Reached Python Calls with the Total Python Calls. Respect-

ing this, the block coverage metric gives us some insight about how many unreachable

blocks are added during the transformation to C. The test programs with only one function

generally achieved a block coverage of around 45% while programs with more than one de-

fined function (Socket, Class) achieve lower coverage. We attribute this observation to the

additional blocks that are inserted in each function to handle possibly thrown exceptions.

Specifically, because exceptions in the functions of Socket and Class are not feasible, our

framework is also not able to cover them, leading to a lower coverage in total. For the

branch prediction, we can observe that it is generally not used for these test programs. This

37

www.manaraa.com

makes sense: The programs do not call any validation routine multiple times for which our

branch prediction was designed for. For Argv, there exists one falsely predicted branch and

zero predicted branches. This is because the exploration will reach the check for "haxor"

twice and remember the taken branch on the first encounter. Therefore, the second time

we encounter this branch, it will be counted as a falsely predicted one. For every program

apart from Class, we can observe that NoSB equals NoSBr. This is the case because for all

those programs, all encountered branches need to be eventually solved. For Class however,

there are two branches that do not need to be solved to discover every function call: Specif-

ically, they occur during the accesses of sys.argv[1] and sys.argv[2][3]. The

first statement can throw an IndexError exception and the second statement can throw

it on two occurrences. Since these exceptions would abort the program, a thrown excep-

tions cannot lead to any uncovered Python Call. Therefore, our framework also does not

try to cover them. However, of those 3, the access of sys.argv[2] needs to be reverted

once because the concrete execution will initially throw an exception because the number

of arguments is initialized to 1. For the executable sizes, we can observe that all sizes are

similar and only two programs are significantly larger. Those programs use the socket

module which is then also transformed to C and linked to the final executable.

5.4 ICS-related Samples

After evaluating our approach on manually created functionality test programs, this section

focuses on the evaluation on ICS-related samples. For this purpose, we will first give a

short description of the samples and then explain the results of our experiments.

5.4.1 Triton Malware

The Triton malware was originally deployed as an executable created by Py2EXE[36].

Py2EXE compiles all required Python modules for a program to byte code (.pyc files),

bundles them, and creates an executable that will later call the Python Interpreter to run

38

www.manaraa.com

the byte code. The byte code can be retrieved using unpy2exe[37] and decompiled using

uncompyle6[38].

Next, we will give an overview of the Python code of Triton. In Figure 5.2 we depict

an overview of Triton’s components and their functions. We excluded functions that are

present in the modules but were not used by the payload. The goal of the Python malware is

to inject its own binary program into the ICS controller. The main module can achieve this

by using the SafeAppendProgramMod function of the TsHi module. After injection,

it waits and queries the program status with GetProjectInfo.

Figure 5.2: Components of the Triton Malware’s Python code

The TsLow module implements the low level layer of the network protocol. The pro-

tocol uses UDP and consists of two layers again: The tcm and the ts layer. The TsBase

layer wraps the low level commands sent via ts exec in functions that are named after

the intended purpose. These functions are then used by the TsHi layer to implement the

high-level functionality.

The SafeAppendProgramMod function of the high level module will first query

the state of the machine via GetProjectInfo, then enumerate all stored programs and

functions. Using this information, it will then append its program to the program list with

AppendProgramMin and wait until the ICS is in a running state.

39

www.manaraa.com

5.4.2 PyModbus

For the evaluation on another ICS-related sample, we chose the widely used and openly

published Modbus protocol[39]. Modbus is an application layer protocol and is used on

top of other communication protocols such as TCP, UDP and serial RTU. The basic func-

tionality allows to read and write coils, which are represented by single bits, and to read

and write 16-bit registers. Registers and Coils can both be addressed with 16-bit values.

For our evaluation, we received a GUI controller program from the Communications

Assurance and Performance (CAP) group from the School of Electrical Engineering at the

Georgia Institute of Technology. The program could be split into two parts: one controller

class and one class for managing the GUI. Regarding the latter, the concolic execution of

GUI programs is out of the scope of this work, and so we removed the GUI and instead

built a test routine which calls each of the controller’s function after another. The controller

class wraps, similar to Triton’s TsBase class, the low level Modbus commands in several

functions with meaningful names. It uses the Modbus protocol over TCP to communicate

with the PLC and uses the PyModbus[40] library as an implementation thereof. For our

evaluation, we used the most recent version of PyModbus, 2.3.0.

5.4.3 Results

Summary. In Table 5.2, we depict the results of our experiments. There, we can first

observe that the PyModbus program is larger in size as can be seen by LOC, Executable

Size and Total Python Calls. For Triton, the analysis took 36.98 minutes and for PyModbus

69.39 minutes. We were able to cover far more branches in Triton than we were able to in

our PyModbus sample. For Triton, our branch prediction was applied 12 times and only

one prediction needed correction. In PyModbus, the number of of Call-Chains is only one

with a size of 15. In Triton, we discover 3 call-chains and the maximum depth is 13.

40

www.manaraa.com

Table 5.2: Analysis result of the Triton Malware and PyModbus

Metric Triton Malware PyModbus Sample

LOC 961 7028

Executable size 1021KB 2873KB

Total Python calls 184 1100

Analysis time 36.98 69.39

Instructions executed 149993 509322

Block coverage 16% 4%

Reached Python calls 74 126

Constraint time 6.13 8.11

Constraint queries 1340 6294

NoSSB 47 414

NoBr 20 3

Branches predicted 12 0

Branches falsely predicted 1 0

#Call-Chains 3 1

Depth Call-Chain (min/avg/max) 10.00/11.00/13.00 15.00/15.00/15.00

Analysis Progress. For Triton, we were able to successfully analyze all low-level func-

tions, extract symbolic expressions for the sent data and extract path constraints for the re-

ceived data. In the high-level class, we reached the function SafeAppendProgramMod

that queries the state of the ICS and appends malicious code to the targeted controller.

We were successful in passing Triton’s validation of the ICS state and were able to ex-

tract the path constraints for it. However, our framework then got stuck in the function

GetProgramTable which repeatedly calls UploadProgram to extract all stored pro-

41

www.manaraa.com

grams in the ICS controller. We are able to analyze the UploadProgram function but

currently fail inside the loop of GetProgramTable due to a bug in our loop detection.

The Depth Call-Chain metric gives us more specific insight of how much communication

has occurred as each sent and received messages increases it by 1. In fact, we could ob-

serve five received and five sent messages. The other three elements in the chain are two

file accesses and the symbolization of the program arguments. For PyModbus, the analysis

failed parsing the responses because we currently lack support to index a dictionary with

a symbolic value. Specifically, PyModbus extracts the Modbus function code value from

the received message header and uses a dictionary to select the correct class to store the

response data. Therefore, we were only able to extract the sent messages from PyModbus

but not any meaningful path constraints.

Branch prediction. For PyModbus, our branch prediction could not be used because

the analysis failed. For Triton, however, the branch prediction was used and shows good

results as 12 predicted branches were taken and only once a branch was falsely predicted.

The falsely predicted branch is the timeout branch in the udp recv function. Specifi-

cally, the udp flush receives data until it times out and, therefore, requires a timeout

to progress. After leaving the loop, the branch prediction remembered the branch to the

timeout which then led to one falsely predicted branch. When we compare the number

of branches that needed to be reverted (NoBR) with the number of predicted branches, we

observe that a relative high amount of branches did not need to be reverted thanks to our

branch prediction. This shows that our branch prediction has significantly improved the

search-strategy for this application.

Performance. As depicted in Table 5.2, the constraint time is only a relatively small

fraction of the overall analysis time. To further analyze which part of our framework uses

up the most time, we used cProfile[41]. as a profiler. With the help of this tool, we

found out that we spend a relatively large amount of time in two routines. One routine

checks whether the current instruction is in the set of blocks that can reach another undis-

42

www.manaraa.com

covered Python call. The other one returns the basic block given an address. Even after

applying multiple optimizations to our code and significantly speeding up those functions,

they remain the most expensive in total.

5.5 Discussion

While we could not fully explore the Triton malware, we argue that our extracted informa-

tion can serve as models for the targeted ICS software. Specifically, we were able to record

several valid messages sent from the malware to the ICS and extract constraints of data

expected by the malware. Most notably, we were able to extract these for the low-level

protocol functions. We argue that since the header of most protocols uniquely identifies

them, our extracted information would also already be sufficient to identify the protocol of

the targeted ICS.

While one could argue that then also the message sent to initiate a connection to the ICS

should be enough to identify the protocol, the Triton malware proofs the opposite: While

the targeted ICS uses the TS and TCM protocol, only the TCM protocol is used to establish

a connection. Therefore, analyzing the initial connection request, one would only be able

to detect the use of the TCM protocol. With our approach, however, we are also able to

extract information regarding higher level protocols such as the TS protocol. This shows

that our framework, even with limited results, can significantly contribute to identifying

potential attack targets of Python ICS malware.

43

www.manaraa.com

CHAPTER 6

LIMITATIONS

6.1 Symbolic dictionary lookups

Currently, the check whether a specific key exists in a dictionary is concretized. As a con-

sequence, we were not able to completely pass the parsing routine of the PyModbus library.

Complete symbolic modeling of dictionaries is a huge challenge as keys can have arbitrary

types including classes defined in the analyzed program’s code. For limited applications

such as dictionaries with only integers and strings, this can be implemented analogously to

our implementation of symbolic pointers (Section 4.2.1). This is up to future work.

6.2 Python version

Our framework currently only supports the Python version 2.7. This is due to the fact that

the Triton malware was written in that Python version and the other Python samples we

found were also either written or compatible with this version. For the support of Python

versions 3.x we do not expect significant overhead. However, some further modeling will

need to be performed for the distinction between the bytes and str types and the respec-

tive encoding functions. This support is up to future work.

6.3 Long values

Python allows its integer values to hold values of any size. In Python 2, there are two

different integer types: int and long. The former is a 32-bit or 64-bit value depending

on the platform and the latter is an integer of arbitrary size. If the int type is no longer able

to hold the value, it will automatically be converted to the long type. Since this conversion

is non-trivial to model and we could not observe the usage of arbitrary size integers yet,

44

www.manaraa.com

this is part of future work.

6.4 Floating point values

Since the Triton dynamic analysis framework currently does not support operations for

floating operators, we inherit this limitation. However, as our evaluation has shown, the

analysis of malware protocols did not require floating point values. Furthermore, constraint

solvers do have support for floating point operations and previous work has shown that it is

possible to add this support to symbolic execution engines[26]. Therefore, adding floating

point support to Triton is up to future work.

6.5 Exec-Statements

One crucial limitation of our approach is that our search strategy cannot efficiently deal

with control flow inside an exec statement. This is due to the fact that exec statements are

not compiled into C code and, therefore, our framework does not have any control flow

information about it. In this case, our strategy will fall back to pure DFS. However, we

argue that this generally does not limit the applicability of our framework. For one thing,

it should be possible extract the argument of the exec function and replace the exec state-

ment in the Python codewith the executed string. In case the exec argument depends on

some input, it should be possible to extract the control-flow deciding components inside

the statement and wrap only the dynamic parts inside an exec statement. For another, in

a more advanced approach it should also be possible to use Nuitka’s approach to com-

pile the dynamically executed statement to assembly just-in-time and extract control-flow

information from there.

45

www.manaraa.com

6.6 Operating system

Our framework was currently only tested and run on the Windows operating system. This

stems from the fact that our motivation was to analyze malware targeting industrial control

systems, which, from our experience and analyzed samples, usually run inside a Windows

operating system. However, our components are platform-independent and our main code-

base is written in Python and, therefore, porting the framework to other operating systems

is possible in future.

46

www.manaraa.com

CHAPTER 7

RELATED WORK

7.1 Malware Analysis

Prior work uses symbolic execution in a variety of applications including automatic discov-

ery of bugs[9, 10, 11, 15], malware analysis[42, 3, 2, 43] and malware classification[44].

Yadegari et al.[45] study symbolic execution on obfuscated code including obfuscations

that transform the program into an interpreting virtual machine[46]. Our approach analyzes

malware written in Python, which is usually compiled into byte-code and then interpreted

as well. Moser et al.[42] and Brumley et al.[43] use symbolic execution to explore mul-

tiple paths of a malicious binary and identify malicious behavior that is triggered only on

certain conditions (e.g. on a specific day). On the contrary, our work focuses on deeply

exploring the common paths and does not actively try to discover trigger-based behav-

ior. If the malware hides its common behavior with such triggers, they might need to be

discovered first so that our approach can further explore the deeper parts of the malware.

Baldoni et al. explore the use of symbolic execution to extract sequences of commands in

Remote-Access-Trojans (RAT) and Borzacchiello et al.[3] extend this work to reconstruct

the respective C2 (Command & Control) server. The goal of this work is similar to our

approach as we also try to extract sequences of commands but from the malware to the

targeted ICS.

7.2 Concolic execution of Python

Conpy[7] is a concolic execution engine for Python that allows symbolic execution of str

and int types. Contrary to our work, it is directly implemented inside Python and does

not rely on the analysis of the interpreter. Instead, Conpy relies on manual overloading of

47

www.manaraa.com

Python’s internal functions (such as ord and chr). CHEF[5] is a framework for prototyping

symbolic execution engines for interpreter languages and has been used to build concolic

execution engines for Lua and Python. Similar to our approach, it uses the interpreter

itself to implement the language’s semantics. CHEF relies on manual modifications to

the interpreter, such as disabling previously optimizations, modifying hash-functions and

instrumenting the interpreter loop to communicate the high-level program counter to the

framework.

48

www.manaraa.com

CHAPTER 8

CONCLUSION

Motivated by the potential catastrophic consequences of the ICS malware Triton, we pro-

posed a new method for concolic execution of Python by transforming it to C. To this end,

we have employed the tool Nuitka to generate the C code and developed a tool based on

the Triton symbolic execution engine to analyze the malware.

To adapt the symbolic execution engine to efficiently analyze the Python interpreter

that is used by the generated code, we implemented multiple function models that describe

the behavior of Python’s operations. We specifically focused on modeling the lookup of

attributes and accesses to dictionaries as they are the most commonly used constructs in

Python.

To speed up the exploration of network protocol code, which often employs validation

functions that check the structure of a message before the semantic content is retrieved,

we have proposed a history-based branch predictor. This branch predictor remembers the

correct path in the validation function and uses it when it explores it next.

We have shown that we can successfully symbolically execute Python programs with

a variety of test programs. Then, we have used our framework on the Triton malware

and a PyModbus sample to show its capabilities of extracting ICS information. While the

analysis of PyModbus failed due to a missing feature in our symbolic modeling, we were

able to extract significant information about the Triton malware’s communication with the

targeted ICS.

49

www.manaraa.com

REFERENCES

[1] M. Giles, Triton is the world’s most murderous malware, and it’s spreading, https:
//www.technologyreview.com/s/613054/cybersecurity-critical-
infrastructure-triton-malware/, Retrieved June 21, 2020.

[2] R. Baldoni, E. Coppa, D. C. D’Elia, and C. Demetrescu, “Assisting malware analysis
with symbolic execution: A case study,” Jun. 2017, pp. 171–188, ISBN: 978-3-319-
60079-6.

[3] L. Borzacchiello, E. Coppa, D. C. D’Elia, and C. Demetrescu, “Reconstructing c2
servers for remote access trojans with symbolic execution,” in Cyber Security Cryp-
tography and Machine Learning, S. Dolev, D. Hendler, S. Lodha, and M. Yung,
Eds., Cham: Springer International Publishing, 2019, pp. 121–140, ISBN: 978-3-
030-20951-3.

[4] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State of) The Art of War:
Offensive Techniques in Binary Analysis,” in IEEE Symposium on Security and Pri-
vacy, 2016.

[5] S. Bucur, J. Kinder, and G. Candea, “Prototyping symbolic execution engines for
interpreted languages,” SIGARCH Comput. Archit. News, vol. 42, no. 1, 239–254,
Feb. 2014.

[6] S. Sapra, M. Minea, S. Chaki, A. Gurfinkel, and E. M. Clarke, “Finding errors
in python programs using dynamic symbolic execution,” in Testing Software and
Systems, H. Yenigün, C. Yilmaz, and A. Ulrich, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 283–289, ISBN: 978-3-642-41707-8.

[7] T. Chen, X.-s. Zhang, R.-d. Chen, B. Yang, and Y. Bai, “Conpy: Concolic execution
engine for python applications,” in Algorithms and Architectures for Parallel Pro-
cessing, X.-h. Sun, W. Qu, I. Stojmenovic, W. Zhou, Z. Li, H. Guo, G. Min, T. Yang,
Y. Wu, and L. Liu, Eds., Cham: Springer International Publishing, 2014, pp. 150–
163, ISBN: 978-3-319-11194-0.

[8] J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol. 19, no. 7,
pp. 385–394, Jul. 1976.

[9] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs,” in OSDI, 2008.

50

https://www.technologyreview.com/s/613054/cybersecurity-critical-infrastructure-triton-malware/
https://www.technologyreview.com/s/613054/cybersecurity-critical-infrastructure-triton-malware/
https://www.technologyreview.com/s/613054/cybersecurity-critical-infrastructure-triton-malware/

www.manaraa.com

[10] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM : A practical concolic execution
engine tailored for hybrid fuzzing,” in 27th USENIX Security Symposium (USENIX
Security 18), Baltimore, MD: USENIX Association, Aug. 2018, pp. 745–761, ISBN:
978-1-939133-04-5.

[11] V. Chipounov, V. Kuznetsov, and G. Candea, “The s2e platform: Design, implemen-
tation, and applications,” ACM Trans. Comput. Syst., vol. 30, no. 1, Feb. 2012.

[12] Triton: A Dynamic Symbolic Execution Framework, SSTIC, 2015, pp. 31–54.

[13] J. Honig, “Autonomous exploitation of system binaries using symbolic analysis,”
2017.

[14] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merging in sym-
bolic execution,” in Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, ser. PLDI ’12, Beijing, China:
Association for Computing Machinery, 2012, 193–204, ISBN: 9781450312059.

[15] S. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem on binary
code,” pp. 380–394, May 2012.

[16] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Krügel, and G. Vigna, “Driller: Augmenting fuzzing through selective symbolic
execution,” in NDSS, 2016.

[17] K. L. McMillan, “Lazy annotation for program testing and verification,” in Com-
puter Aided Verification, T. Touili, B. Cook, and P. Jackson, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 104–118, ISBN: 978-3-642-14295-6.

[18] S. Khurshid, C. S. Păsăreanu, and W. Visser, “Generalized symbolic execution for
model checking and testing,” in Proceedings of the 9th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, ser. TACAS’03,
Warsaw, Poland: Springer-Verlag, 2003, 553–568, ISBN: 3540008985.

[19] K.-K. Ma, K. Yit Phang, J. S. Foster, and M. Hicks, “Directed symbolic execution,”
in Static Analysis, E. Yahav, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 95–111, ISBN: 978-3-642-23702-7.

[20] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with
dynamic instrumentation,” SIGPLAN Not., vol. 40, no. 6, 190–200, Jun. 2005.

[21] H. Xu, Z. Zhao, Y. Zhou, and M. R. Lyu, “Benchmarking the capability of symbolic
execution tools with logic bombs,” IEEE Transactions on Dependable and Secure
Computing, pp. 1–1, 2018.

51

www.manaraa.com

[22] J. Salwan, Smt array issue #806, https://github.com/JonathanSalwan/
Triton/issues/806, Retrieved June 21, 2020.

[23] C. F. Bolz and A. Rigo, “How to not write virtual machines for dynamic languages,”
2007.

[24] The python programming language, https://github.com/python/cpython,
Retrieved June 21, 2020.

[25] The stackless python programming language, https://github.com/stackless-
dev/stackless, Retrieved June 21, 2020.

[26] D. M. Perry, A. Mattavelli, X. Zhang, and C. Cadar, “Accelerating array constraints
in symbolic execution,” in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2017, Santa Barbara, CA,
USA: ACM, 2017, pp. 68–78, ISBN: 978-1-4503-5076-1.

[27] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Seljebotn, and K. Smith, “Cython:
The best of both worlds,” Computing in Science Engineering, vol. 13, no. 2, pp. 31
–39, 2011.

[28] K. Hayen, Nuitka, http://nuitka.net, Retrieved June 21, 2020.

[29] C. Eagle, The IDA Pro Book: The Unofficial Guide to the World’s Most Popular
Disassembler. USA: No Starch Press, 2011, ISBN: 1593272898.

[30] R. Thomas, Lief - library to instrument executable formats, https://lief.quarkslab.com/,
Apr. 2017.

[31] D. Vostokov, WinDbg: A Reference Poster and Learning Cards. Opentask, 2008,
ISBN: 190671729X.

[32] Gdb: The gnu project debugger, https://www.gnu.org/software/gdb/,
Retrieved June 21, 2020.

[33] S. Mittal, “A survey of techniques for dynamic branch prediction,” Concurrency and
Computation Practice and Experience, Apr. 2018.

[34] Pin: Pin 2.14 user guide, https://software.intel.com/sites/landingpage/
pintool/docs/71313/Pin/html/index.html, Retrieved June 21, 2020.

[35] Cloc - count lines of code, http://cloc.sourceforge.net/, Retrieved
June 21, 2020.

[36] Py2exe, https://www.py2exe.org/, Retrieved June 21, 2020.

52

https://github.com/JonathanSalwan/Triton/issues/806
https://github.com/JonathanSalwan/Triton/issues/806
https://github.com/python/cpython
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
http://nuitka.net
https://www.gnu.org/software/gdb/
https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/index.html
https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/index.html
http://cloc.sourceforge.net/
https://www.py2exe.org/

www.manaraa.com

[37] M. Bordese, Unpy2exe, https://github.com/matiasb/unpy2exe, Re-
trieved July 9, 2020.

[38] R. Bernstein, Uncompyle6, https://github.com/rocky/python-uncompyle6,
Retrieved July 9, 2020.

[39] I. Modbus, “Modbus application protocol specification v1. 1a,” North Grafton, Mas-
sachusetts (www. modbus. org/specs. php), 2004.

[40] RiptideIO, Pymodbus, https://github.com/riptideio/pymodbus,
Retrieved July 12, 2020.

[41] The python profilers, https://docs.python.org/2/library/profile.
html#module-cProfile, Retrieved June 21, 2020.

[42] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths for mal-
ware analysis,” Jun. 2007, pp. 231–245, ISBN: 0-7695-2848-1.

[43] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin, “Automatically
identifying trigger-based behavior in malware,” in Botnet Detection: Countering the
Largest Security Threat, W. Lee, C. Wang, and D. Dagon, Eds. Boston, MA: Springer
US, 2008, pp. 65–88, ISBN: 978-0-387-68768-1.

[44] S. Sebastio, E. Baranov, F. Biondi, O. Decourbe, T. Given-Wilson, A. Legay, C.
Puodzius, and J. Quilbeuf, “Optimizing symbolic execution for malware behavior
classification,” Computers & Security, vol. 93, p. 101 775, 2020.

[45] B. Yadegari and S. Debray, “Symbolic execution of obfuscated code,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15, Denver, Colorado, USA: Association for Computing Machinery, 2015,
732–744, ISBN: 9781450338325.

[46] H. Fang, Y. Wu, S. Wang, and Y. Huang, “Multi-stage binary code obfuscation using
improved virtual machine,” Oct. 2011, pp. 168–181.

53

https://github.com/matiasb/unpy2exe
https://github.com/rocky/python-uncompyle6
https://github.com/riptideio/pymodbus
https://docs.python.org/2/library/profile.html#module-cProfile
https://docs.python.org/2/library/profile.html#module-cProfile

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Symbolic Execution
	Concolic Execution
	Search Strategies
	Triton Concolic Engine

	Dynamic Binary Instrumentation
	Python

	Design
	Python transformation to C
	Choice of Tooling
	Choice of dynamic symbolic execution engine
	Choice of static analysis framework
	Choice of dynamic tracer

	Concolic execution
	Search strategy
	Branch prediction
	Snapshotting
	Other optimizations

	Output

	Implementation
	Framework code structure
	Modifications to the Triton Dynamic Analysis Framework
	Symbolic pointers
	Tracer modifications and porting

	Python modeling
	Python's object system
	Modeling

	Evaluation
	Metrics
	Experiment Setup
	Functionality Test Programs
	ICS-related Samples
	Triton Malware
	PyModbus
	Results

	Discussion

	Limitations
	Symbolic dictionary lookups
	Python version
	Long values
	Floating point values
	Exec-Statements
	Operating system

	Related Work
	Malware Analysis
	Concolic execution of Python

	Conclusion
	References

